A double critical mass phenomenon in a no-flux-Dirichlet Keller-Segel system

نویسندگان

چکیده

Derived from a biophysical model for the motion of crawling cell, evolution system(⋆){ut=Δu−∇⋅(u∇v),0=Δv−kv+u, is investigated in finite domain Ω⊂Rn, n≥2, with k≥0. Whereas comprehensive literature available cases which (⋆) describes chemotaxis-driven population dynamics and hence accompanied by homogeneous Neumann-type boundary conditions both components, presently considered modeling context, besides yet requiring flux ∂νu−u∂νv to vanish on ∂Ω, inherently involves Dirichlet attractant v, current setting corresponds cell's cytoskeleton being free pressure at boundary. This modification shown go along substantial change respect potential support emergence singular structures: It is, inter alia, revealed that contexts radial solutions balls there exist two critical mass levels, distinct each other whenever k>0 or n≥3, separate ranges within (i) all are global time remain bounded, (ii) bounded exploding exist, (iii) nontrivial blow up. While phenomena distinguishing between regimes type belong well-understood characteristics when posed under classical no-flux planar domains, discovery secondary level related occurrence seems have no nearby precedent. In case disk, analytical results supplemented some numerical illustrations, it discussed how findings can be interpreted biophysically situation cell flat substrate. Dérivé d'un modèle biophysique pour le mouvement d'une cellule rampante, système d'évolution(⋆){ut=Δu−∇⋅(u∇v),0=Δv−kv+u, est étudiée dans un domaine fini avec Alors qu'une littérature complète disponible les cas lesquels décrit une dynamique de pilotée par chimiotaxie et donc s'accompagne aux limites homogènes Neumann deux composantes, contexte modélisation actuellement considéré, en plus d'exiger que disparaisse sur implique intrinsèquement des l'attractif qui, présent, correspond au cytosquelette la libre toute pression à frontière. Il démontré cette changement substantiel ce qui concerne potentiel d'émergence structures singulières : est, entre autres, révélé contextes radiales boules, il existe niveaux masse critique, distincts l'un l'autre quand ou séparent plages lesquelles toutes sont globales temps restent bornées, fois bornées explosives existent, non triviales explosent. phénomènes critique distinguent régimes appartiennent caractéristiques bien comprises (⋆), lorsqu'ils posés sous classiques sans domaines planaires, découverte niveau secondaire lié l'occurrence semble n'avoir aucun précédent proche. Dans planaire où disque, résultats analytiques complétés quelques illustrations numériques, nous discutons manière dont peuvent être interprétés biophysiquement substrat plat.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions

This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic PatlakKeller-Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial...

متن کامل

Stationary solutions to a Keller-Segel chemotaxis system

We consider the following stationary Keller-Segel system from chemotaxis ∆u− au + u = 0, u > 0 in Ω, ∂u ∂ν = 0 on ∂Ω, where Ω ⊂ R is a smooth and bounded domain. We show that given any two positive integers K, L, for p sufficiently large, there exists a solution concentrating in K interior points and L boundary points. The location of the blow-up points is related to the Green’s function. The s...

متن کامل

Instability in a generalized Keller-Segel model.

We present a generalized Keller-Segel model where an arbitrary number of chemical compounds react, some of which are produced by a species, and one of which is a chemoattractant for the species. To investigate the stability of homogeneous stationary states of this generalized model, we consider the eigenvalues of a linearized system. We are able to reduce this infinite dimensional eigenproblem ...

متن کامل

A Note on the Subcritical Two Dimensional Keller-Segel System

The existence of solution for the 2D-Keller-Segel system in the subcritical case, i.e. when the initial mass is less than 8π , is reproved. Instead of using the entropy in the free energy and free energy dissipation, which was used in the proofs (Blanchet et al. in SIAM J. Numer. Anal. 46:691–721, 2008; Electron. J. Differ. Equ. Conf. 44:32, 2006 (electronic)), the potential energy term is full...

متن کامل

A stochastic Keller-Segel model of chemotaxis

We introduce stochastic models of chemotaxis generalizing the deterministic KellerSegel model. These models include fluctuations which are important in systems with small particle numbers or close to a critical point. Following Dean’s approach, we derive the exact kinetic equation satisfied by the density distribution of cells. In the mean field limit where statistical correlations between cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2022

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2022.04.004